THE CONFIGURATION OF VENOTERPINE

Thérèse RAVAO, Bernard RICHARD, Monique ZECHES, Georges MASSIOT and Louisette LE MEN-OLIVIER U.A. n°492 au C.N.R.S., Faculté de Pharmacie, 51 rue Cognacq-Jay 51096 REIMS CEDEX, FRANCE

<u>Abstract</u> : Venoterpine and cantleyine were chemically correlated and shown to have the same absolute configuration.

Venoterpine $\underline{1}^1$ and cantleyine $\underline{2}^2$ are monoterpene alkaloids of wide natural distribution.³ The structure of $\underline{2}$ was proved by a chemical correlation with loganin² but the absolute configuration of $\underline{1}$ so far rests only a CD study⁴. Until now it was generally believed albeit without explanation that venoterpine $\underline{1}$ had the opposite configuration from that of cantleyine $\underline{2}$. This situation has recently been questioned⁵ and the simultaneous isolation in our laboratory of $\underline{1}$ and $\underline{2}$ in the same plants lead us to reexamine the situation.

Compounds <u>1</u> and <u>2</u> were isolated from *Alstonia angustiloba*, *A.pneumatophora* and *A.spatulata*⁶. Their gross structures were established by comparison of their physical properties with literature data^{1,2}. Examination of their ¹³C NMR spectra disclosed a similar substitution pattern for their cyclopentane ring (Table I). All these data confirmed the known relative configuration of <u>1</u> and <u>2</u>, the absolute configuration of <u>1</u> only remaining to be determined. This was established by a chemical correlation between <u>2</u> and <u>1</u> based on the flash pyrolysis of the carboxylic acid derived from cantleyine. Barium hydroxide hydrolysis of <u>2</u> ((α)_D=-40°;CHCl₃) followed by CO₂ neutralization yielded an acid, which was dissolved in THF (2mg/ml) and submitted to vacuum flash pyrolysis in a vertical hot tube (glass beads filling) preheated to 460°C. Condensation of the eluate yielded tars and a single non-polar compound in all respects identical to venoterpine (MS, IR, NMR, UV, TLC). The optical rotation of this material $((\alpha)_{D}^{=+38^{\circ}}; CHCl_{3})$ was identical to the value found for natural <u>1</u> $((\alpha)_{D}^{=+32^{\circ}}; CHCl_{3})$ within experimental error.

We thus conclude that $\underline{1}$ and $\underline{2}$ have the same absolute configuration as loganin, which is probably their common genitor.

{	1	2	3	4	5	6	7	8	9	<u>с</u> оосн ₃	соо <u>сн</u> з
17	146,9	142,0	42,5	11,9	74,6	40,7	150,9	120,2	144,6		
1	147,6	142,0	42,8	12	75,1	41	150,6	120,5	145,2		
2	148,8	143,4	42,6	12,1	74,4	42,2	154	123,2	147,1	166,1	52,1

Fable	I	: ¹³ C NMR (CDCL ₃)	(Sppm) ⁷
-------	---	--	---------------------

References :

- a) H.R.Arthur, S.R.Johns, J.A.Lamberton and S.N.Loo, Aust.J.Chem., <u>20</u>, 2505 (1967)
 b) A.B.Ray and A.Chatterjee, Tetrahedron Lett., 2763 (1968).
- 2. T.Sévenet, B.C.Das, J.Parello and P.Potier, Bull.Soc.Chim.France, 3120 (1970).
- 3. G.A.Cordell, in "The Alkaloids", vol XVI, R.H.F.Manske, ed. Academic Press, New York, p.431 (1977).
- 4. L.A.Mitscher, A.B.Ray and A.Chatterjee, Experientia, 27, 16 (1971).
- 5. H.Ripperger, Pharmazie, <u>34</u>, 577 (1979).
- Plant material was kindly provided by Dr T.Sévenet and collected as part of a C.N.R.S. mission in South East Asia.
- 7. see : M.R.Roby and F.R.Stermitz, J.Nat.Prod., <u>47</u>, 846 (1984), for the ¹³C NMR spectra of an isomer of <u>2</u> and A.Patra, A.K.Mukhopadhyay and A.K.Mitra, Indian J.Chem., <u>17B</u>, 175(1979) for a previous ¹³C assignment of <u>1</u>.

(+) ((α), UV, IR, SM, ¹H RMN).

(Received in France 6 December 1984)